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Abstract. We study the relevance of including information about rejected Monte-Carlo moves in path-
sampling computations of free energies. For this purpose, we define webs as sets of paths linked by the
path-sampling scheme and introduce an associated statistical ensemble. Within this web ensemble, we
derive and test several statistical averages enabling to include information about configurational and path
quantities belonging to the unselected trial moves. We numerically observe that retrieving this information
does not always result in variance reduction, as theoretically predicted by Delmas and Jourdain. To explain
the possible detrimental effect of information-retrieving from web sampling, an action for the webs is
introduced. The behaviour of the statistical variance is observed to correlate to an overlapping area of a
web action histogram. This area represents the probability that a generated web is such that the difference
of its action between the targeted and reference ensembles is lower than the corresponding difference
of free energy. Variance reductions are numerically observed for increased areas, as it is the case for the
residence weight method proposed previously. More generally, web ensembles yield a rigorous framework for
rationalizing existing methods and also for deriving potentially new methods enabling to retrieve relevant
information from rejected trial moves.

PACS. 05.10.Ln Monte Carlo methods – 07.05.Tp Computer modeling and simulation – 05.20.Jj Statistical
mechanics of classical fluids

1 Introduction

Markov-Chain Monte Carlo (MCMC) methods are used
extensively to compute the thermodynamic properties of
many-body systems. Any MCMC method is based on an
algorithm that generates a Markov chain of configura-
tions in which the probability to visit any particular confi-
guration is made proportional to an adequate statistical
weight, here the Boltzmann weight, in order to insure the
desired form of importance sampling. To achieve this, the
sequential Metropolis algorithm can be implemented: a
trial configuration is first generated and then added to
the Markov chain using a judicious acceptance rule. As
a result a proportion of the trial configurations are re-
jected and information about these rejected configurations
is wasted.

At variance, parallel MCMC algorithms, such as resi-
dence time algorithms [1,2], generalized residence time al-
gorithms [3,4], residence weight algorithms [5,6] and the
waste-recycling algorithm [7], which were developed to im-
prove the efficiency of the Metropolis algorithm, retrieve
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information related to the wasted trial moves. These al-
gorithms generate several trial moves in parallel at each
Monte Carlo step prior to selecting a favorable one using
the Rosenbluth rule. Except for the waste-recycling algo-
rithm, the configuration chain that is constructed using
these algorithms differs from the Boltzmann distribution.
Hence, a re-weighing factor accommodates the deviation
from the targeted statistical weight and enables to recover
the desired ensemble average. This re-weighing factor cor-
responds to a residence time or residence weight and in-
corporates information related to the unselected moves.

In the waste-recycling algorithm [7], the Markov chain
consisting of the selected configurations is made propor-
tional to the Boltzmann weight. Here, information is re-
trieved by including the unselected configurations in the
ensemble average and weighing their contributions using
the Rosenbluth probabilities of the selecting procedure.
This way of proceeding indeed generalizes a modification
of the sequential Metropolis algorithm that was proposed
by Ceperley et al. [8] thirty years ago. Information about
rejected trial moves is also retrieved within an ensemble
average that includes the acceptance rule and whose an-
alytical form was conjectured. It was suggested that the
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use of normally rejected information should result in a
statistical variance reduction. From a probabilistic point
of view, some properties of this information-retrieving
scheme have been elucidated recently [9]: the ensemble av-
erage is shown to converge normally asymptotically and
its asymptotic variance is proved to be not smaller in gen-
eral than the one of the standard Metropolis procedure,
contrarily to what was expected.

Boulougouris and Frenkel [10,11] further general-
ized the sequential information-retrieving average. They
showed that not only one but an infinite number of valid
averages could be used in practice in order to retrieve
information about rejected trial configurations. The pro-
posed derivation consists in inserting, within the Monte
Carlo average, a balance equation linking an accepted
configuration to its subsequent trial configuration [10,11].
From a probabilistic point of view, this approach is equiva-
lent to perform the ensemble average over a Markov chain
of linked configurations rather than of configurations.

The aim of this article is to show that the concepts
related to averaging linked configuration ensembles also
apply to the residence algorithms aforementioned. It will
result in a rigorous framework enabling to rationalize the
residence algorithms and to derive additional information-
retrieving averages. We will also examine their variances
numerically, and explain in which cases unselected infor-
mation is relevant.

The article is organized as follows. In Section 2, we
present the problem and introduce the statistical ensem-
bles in which residence algorithms operate. Information-
retrieving averages are formulated in Sections 3 and 4, and
implemented in Section 5 for computing free energy differ-
ences between two values of a control parameter within a
toy model system. In Section 6, we reformulate the original
approach that allowed to derive the residence weight algo-
rithm. In particular, we show that the weighted detailed
balance equation that was introduced to justify these algo-
rithms is not valid in general. We give some final remarks
in Section 7.

2 Configuration and path ensembles

As a common feature, residence algorithms are based
on Boltzmannian path-sampling schemes [12]: this means
that, provided a suitable path ensemble is defined, the
chain constituted by the selected trial paths is Markovian
and Boltzmann distributed. This feature suggests that in-
cluding information about the unselected trial moves will
be made by estimating the averages in an ensemble of
linked paths, instead of an ensemble of linked configura-
tions as for the Metropolis algorithms [10]. To simplify
the denominations, linked paths will be called webs and
the associated statistical ensemble will be called web en-
semble, inspiring from the terminology of reference [10].
Configuration and path ensembles are defined now, while
the web ensemble averages are introduced in Section 3.

Let r designate the particle positions of the many-body
system. We assume that the configurational energy, noted
Eλ(r), is parametrized by an external control parameter λ.

The ensemble, noted Zλ, with constant particle num-
ber N , inverse temperature β = 1/(kT ) and control pa-
rameter λ, has partition function

Zλ =
1

ΛdNN !

∫
dr exp[−βEλ(r)], (1)

where Λ =
√

h2/ [2πmkT ] is de Broglie’s thermal wave-
length, (h is Planck’s constant and m is the particle
mass) and d is dimension. We also have dr =

∏d
k=1 drk,

where rk are the components of r. The free energy is
Fλ = −kT ln Zλ. The unnormalized Boltzmann weight

Nλ(r) = exp[−βEλ(r)]/[Λ3NN !] (2)

allows to define the canonical ensemble average as

〈Aλ〉 =
∫

A(r)Nλ(r)dr∫ Nλ(r)dr
, (3)

where A is any configurational quantity. Let us now de-
fine paths as pairs of configurations, z ≡ (r0, r1) where
r0 and r1 are any two configurations. We also consider
a stochastic process allowing to construct a new config-
uration starting from an old one. The generating prob-
abilities associated to this process will be considered as
conditional probabilities in a path ensemble. Hence, we
note Pcond(z|r0) and Pcond(z|r1) the two possible proba-
bilities to construct path z given that either r0 or r1 is
known.

To define the path ensemble Z̃0, we associate to the
paths z the equivalent of a Boltzmann weight

K0(z) = N0(r0)Pcond(z|r0). (4)

This unnormalized Boltzmann weight is proportional to
the probability to observe the corresponding path in a
simulation, provided that paths are initiated from config-
urations r0 distributed according to ensemble Z0. Paths
of Z̃0 are said to be forward.

Because the conditional probabilities are normalized
to one, ensemble averages can also be taken in the path
ensemble

〈A0〉 =

∫
A(r0)N0(r0)dr0

∫
Ω(r0)

Pcond(z|r0)Dz∫ N0(r0)dr0

∫
Ω(r0)

Pcond(z|r0)Dz
(5)

=
∫

A(r0)K0(z)Dz∫ K0(z)Dz
(6)

where Ω(r0) is the subset of all paths starting from r0.
Here,

∫
...Dz denotes an integration over paths. Similarly,

if the final configurations r1 of the paths are distributed
according to Z1 ensemble and if paths are constructed
backward (r0 is generated from r1), then the Boltzmann
weight for the paths becomes

K1(z) = N1(r1)Pcond(z|r1), (7)

which defines a path ensemble, noted Z̃1. Paths of Z̃1 are
said to be backward. One can also express the canonical
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average in the path ensemble Z̃1 instead of Z1,

〈A1〉 =
∫

A(r1)K1(z)Dz∫ K1(z)Dz
. (8)

The two Boltzmann weights related to a given path may
be expressed as the exponential of an action

K0(z) = exp
[
−β

2
U(z) +

β

2
W (z)

]
(9)

K1(z) = exp
[
−β

2
U(z) − β

2
W (z)

]
, (10)

The action of the path has been decomposed into a sym-
metric contribution, β

2 U(z), and an antisymmetric contri-
bution, β

2 W (z). One interprets W (z) as an effective work
because it always satisfies a second principle, even when
the stochastic process is not micro-reversible [12]. The de-
composition allows to define the following parametrized
path weight

Kθ(z) = exp
[
−βU(z) + β

(
1
2
− θ)W (z

)]
, (11)

together with an associated path partition function [12]

Z̃θ =
∫

Kθ(z)Dz, (12)

where θ ∈ [0; 1]. This defines a associated path ensemble,
noted Z̃θ.

Formally, any path quantity B can be averaged in the
path ensemble Z̃θ

〈B〉θ =
∫

B(z)Kθ(z)Dz∫ Kθ(z)Dz
. (13)

In practice, path averages are useful to compute free en-
ergy differences [13] or Landau free energies [14]. In this
study, we will later compute the free energy difference
∆F = F1 − F0 between system (1) and system (0) us-
ing path average (13) and θ = 1/2. To do so, one first
notices that the conditional path probabilities are nor-
malized, hence Z̃0 = Z0, Z̃1 = Z1, which gives

exp [−β∆F ] =
Z̃1

Z̃0

. (14)

One then takes advantage of the bridging property of Z̃ 1
2

with respect to Z̃0 and Z̃1 ensembles, to obtain an efficient
way to compute free energy differences [12,15–19]

exp [−β∆F ] =
Z̃1/Z̃ 1

2

Z̃0/Z̃ 1
2

(15)

=
〈Υ1(z)〉 1

2

〈Υ0(z)〉 1
2

(16)

=
〈exp

[
−β

2 W (z)
]
〉 1

2

〈exp
[
+β

2 W (z)
]
〉 1

2

(17)

where the path averages in the numerator and denomina-
tor of equation (16) are obtained by substituting the path
function Υα(z) = Kα(z)/K 1

2
(z) using α = 1 and α = 0

respectively, into equation (13) with θ = 1
2 .

2.1 Path-sampling scheme

Estimating the path-averages above requires a Monte
Carlo scheme that enables to construct a Markov chain
of paths with Z̃ 1

2
statistics. Here, we describe the parallel

path-sampling scheme that will be implemented.
We note z0 the current path and z1,.., zi,..,zI the

I trial paths generated in parallel by the path-sampling
scheme. We call web any set π = (z0, .., zi, .., zI) consist-
ing in I + 1 paths that can be constructed by the path-
sampling scheme starting from the current path z0. More-
over, the path generating procedure is revertible: π can be
constructed starting from any path zi with an associated
conditional probability such that Pcond(π|zi) > 0.

The Metropolis algorithm is used. Among the I trial
paths, one path, let say zi, is pre-selected with probabil-
ity Ps(zi|π|z0). It is then accepted with the Metropolis
probability

Pacc(zi) = min

(
1,

K 1
2
(zi)Pcond(π|z0)Ps(zi|π|z0)

K 1
2
(z0)Pcond(π|zi)Ps(z0|π0|zi)

)
.

If path zi is rejected, then path z0 is selected instead.
The Metropolis acceptance rule obeys the detailed balance
condition

K 1
2
(z0)Pcond(π|z0)Ps(zi|π|z0)Pacc(zi) =

K 1
2
(zi)Pcond(π|zi)Ps(z0|π|zi)Pacc(z0). (18)

This condition insures that the Markov chain of paths
converges towards the Z̃ 1

2
statistics. Since the selecting

probability is chosen to be

Ps(zk|π|zj) =
K 1

2
(zk)Pcond(π|zk)∑l �=j

0≤l≤I K 1
2
(zl)Pcond(π|zl)

(19)

the acceptance rule simplifies to

Pacc(zi) = min

(
1,

∑l �=0
0≤l≤I K 1

2
(zl)Pcond(π|zl)∑l �=i

0≤l≤I K 1
2
(zl)Pcond(π|zl)

)
. (20)

This acceptance rule will be used in the present study. It
was proposed previously [5] in an equivalent form and has
been studied theoretically in reference [9].

Note that a symmetrical rule

P ′
s(zk|π|zj) =

K 1
2
(zk)Pcond(π|zk)∑

0≤l≤I K 1
2
(zl)Pcond(π|zl)

= pR(zk|π) (21)

can be used as a selecting probability provided that we set

P ′
acc(zi) = P ′

acc(z0) = 1.
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πn πn+3πn+2πn+1

πn+4

(a)

(b)

Fig. 1. Alternating procedure [5,6] for generating trial paths
in parallel with I = 7: (a) selected paths are represented by
dumbbells; unselected trial paths are represented by dashed
arrows and are generated starting from the terminal config-
urations (dashed circles) of the selected paths; (b) the corre-
sponding successive webs are represented by ellipses. Inside a
web, the dashed circle represents the configuration from which
all trial paths are generated. This property guarantees the re-
versibility of the algorithm. Note also that the selected path in
web πn+2 is identical to the one of web πn+3.

in equation (18) in order to satisfy the condition of de-
tailed balance. However, for this symmetric rule, the prob-
ability to transit to a new path zi (i > 0) is always lower
than the one given by the Metropolis algorithm since we
always have

pR(zi|π) ≤ Ps(zi|π|z0)Pacc(zi).

For this reason, the Metropolis rule Pacc(zi) is tradi-
tionally preferred to the symmetric rule pR(zi|π).

Several procedures for generating the trial paths have
been used in the literature. The alternating procedure,
proposed and used in references [5–7,12], consists in gen-
erating the trial paths starting from the final configura-
tion of the last accepted path, as depicted in Figure 1a.
This way of proceeding amounts to implement the waste-
recycling algorithm in an ensemble of paths rather than
of configurations, as shown in Figure 1b.

The alternating procedure has been generalized by the
shooting procedure [16,18,20,21] that consists in gener-
ating a trial path both forward and backward in time
starting from a randomly selected time slice and from a
randomly generated configuration.

In the present study, the parallel shooting procedure
schematized in Figure 2 will be used: 2I configurational
replicas are considered in parallel: half with Z0 and half
with Z1 statistics. With probability p0, one draws the I
configurational replica that are represented by the black
circles using Z0 statistics; from them one generates the
I forward trial paths that are represented by the black
dashed arrows using Z̃0 statistics, in which case the con-

πn πn+3πn+2πn+1

πn+4

Fig. 2. Schematic representation of the parallel shooting pro-
cedure. Trial paths generated forward with Z̃0 statistics are
represented by black dashed arrows pointing upward, while
those generated backward with Z̃1 statistics are represented
by grey dashed arrows pointing downward. πn and πn+1 are
top webs, while πn+2, πn+3 and πn+4 are bottom webs. Note
that at variance with the alternating procedure, trial paths
are generated from different configurations, represented by the
small circles. Reversibility of the algorithm is nevertheless pre-
served owing to the use of adequate non-symmetric a priori
probabilities in the acceptance procedure.

structed web is called bottom. Otherwise, i.e. with prob-
ability p1 = 1 − p0, one draws I replica with Z1 statistics
prior to generating trial paths backward with Z̃1 statistics,
in which case the constructed web is called top, replica
are represented in Figure 2 by grey circles and paths by
grey arrows. Hence, knowing path zj ∈ π, the I remain-
ing paths zl (l �= j) of the web are generated with a
conditional probability equal to the Boltzmann weights

in
[
Z̃α

]I

Pcond(π|zj) =
pα

[Zα]I

l �=j∏
0≤l≤I

Kα(zl). (22)

with α = 0 or α = 1 which respectively corresponds to a
bottom or top web.

In this study, equation (22) is strictly obeyed because
the configurational replicas will be generated with Zα

statistics directly. If the parallel replicas were obtained
from standard Metropolis or Langevin simulations in en-
semble Zα, equation (22) would be only fulfilled up to
an unknown normalization constant. Since the same un-
known constant would appear in both sides of detailed
balance (Eq. (18)), reversibility would still hold and the
present procedure would still apply to this more general
case.

3 Web ensembles

Provided a probability density is associated to the webs in-
troduced above, a web-ensemble and web-averages can be
defined. Web-averages will enable to retrieve information
about unselected paths. Since the statistical weights tar-
geted by the path-sampling scheme are K 1

2
(z0), the webs
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constructed from z0 occur with probability density

Φ(π|z0) =
K 1

2
(z0)Pcond(π|z0)

Z̃ 1
2

(23)

in the course of the Monte Carlo simulation. The ensem-
ble average of a path quantity B can then be formally
transposed into the web-ensemble

〈B〉 1
2

=

∫
B(z0)K 1

2
(z0)Dz0∫ K 1

2
(π|z0)Dz0

≡

〈B〉�1
2

=
∫

B(z0)Φ(π|z0)Dπ. (24)

Here, we have introduced
∫
...Dπ ≡ ∫

...
∏I

i=0 Dzi to de-
note a summation over webs. Restricting the integration
volume to top and bottom webs respectively yields two
additional web-averages

〈B〉 1
2
≡ 〈B〉11

2
=

1
p1

∫
�

B(z0)Φ(π|z0)Dπ (25)

≡ 〈B〉01
2

=
1
p0

∫
⊥

B(z0)Φ(π|z0)Dπ (26)

that will also be considered. The ensemble average of a
configurational quantity A defined for Zθ but considered
with respect to the present web ensemble Z̃�

1
2

can be trans-
posed from the path average of equation 8 as follows

〈Aθ〉 =

∫
A(rθ,0)Υθ(z0)K 1

2
(z0)Dz0∫

Υθ(z0)K 1
2
(π|z0)Dz0

=
∫

A(rθ,0)Υθ(z0)Φ(π|z0)Dπ∫
Υθ(z0)Φ(π|z0)Dπ

=
〈AθΥθ〉�1

2

〈Υθ〉�1
2

, (27)

where 〈AθΥθ〉�1
2

is a web average given by equation (24)
since it involves the path quantity z→A(rθ)Υθ(z).

3.1 Information retrieving

The web-average introduced above will make it possible to
retrieve information about rejected trial paths. To account
for the unselected paths z0<i≤I in the web-average, we
first consider the adequate web density

Φ(π|zi) =
K 1

2
(zi)Pcond(π|zi)

Z̃ 1
2

, (28)

that allows to define I +1 equivalent ways of carrying out
the web-ensemble average

〈B〉�1
2

=
∫

B(zi)Φ(π|zi)Dπ. (29)

Let p(zi|π) (zi ∈ π 0 ≤ i ≤ I) denote a real positive
function defined on the web ensemble and satisfying the
set of detailed balance conditions

p(zi|π)Φ(π|zj) = p(zj |π)Φ(π|zi), (30)

where 0 ≤ j ≤ I. The web average can be re-expressed as

〈B〉�1
2

=
∫

B(z0)

[
1 −

I∑
i=1

p(zi|π)

]
Φ(π|z0)Dπ

+
I∑

i=1

∫
B(z0)p(zi|π)Φ(π|z0)Dπ. (31)

If we define the permutation

π = (z0, .., zi, .., zI) → π̄i = (z̄i
0, .., z̄

i
j , .., z̄

i
I),

where

z̄i
j =

⎧⎪⎨
⎪⎩

zi if j = 0
z0 if j = i

zj otherwise ,

then, the integrals inside the summation in equation (31)
can be restated as∫

B(z0)p(zi|π)Φ(π|z0)Dπ =
∫

B(z0)p(z0|π)Φ(π|zi)Dπ

=
∫

B(z̄i
i)p(z̄i

i|π̄i)Φ(π̄i|z̄i
0)Dπ̄i

=
∫

B(zi)p(zi|π)Φ(π|z0)Dπ.

The first transformation consists in inserting the detailed
balance condition of equation (30). The second transfor-
mation substitutes web π̄i for web π. This is made possi-
ble because the web integration volume is invariant under
permutation of paths inside the webs. For any integrated
web π, web π̄i is also to be integrated, and vice versa. This
feature leaves the value of the web-integral unchanged. Fi-
nally, the third transformation is simply a notation change
for a dummy variable. Substituting the obtained integral
into equation (31) yields

〈B〉�1
2

=
∫ {

B(z0)

[
1 −

I∑
i=1

p(zi|π)

]

+
I∑

i=1

B(zi)p(zi|π)

}
Φ(π|z0)Dπ. (32)

This average is valid for any web function satisfying the
set of detailed balance conditions (Eq. (30)). Hence, if we
also impose the additional normalization constraint

1 −
I∑

i=1

p(zi|π) = p(z0|π), (33)

then the web-ensemble average becomes

〈B〉�1
2

=
∫ I∑

i=0

B(zi)pR(zi|π)Φ(π|z0)Dπ, (34)
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where pR(zi|π) is the unique solution corresponding to
the linear system of I + 1 independent equations formed
by equations (30) and (33). We have

pR(zi|π) =
Φ(π|zi)∑I
i=0 Φ(π|zi)

. (35)

Finally, transposing the path-ensemble average of a con-
figurational quantity defined in Zθ (Eq. (27)) into a web-
ensemble average reads

〈Aθ〉 =
∫ ∑I

i=0 A(rθ,i)Υθ(zi)pR(zi|π)Φ(π|z0)Dπ∫ ∑I
i=0 Υθ(zi)pR(zi|π)Φ(π|z0)Dπ

.(36)

3.2 Monte Carlo estimates

Now let consider that we have implemented the Metropolis
algorithm with Pcond(π|z0) as a priori generating proba-
bilities. The Markov chain of paths {zn,0} is Boltzmann
distributed in Z̃ 1

2
, while the Markov chain of webs {πn}

is distributed with probability density Φ(πn|zn,0). Hence,
the formal average of a path quantity B (Eq. (34)) can be
estimated from the following MCMC average

〈B〉�1
2

=
1
N

N∑
n=1

I∑
i=0

[B(zi,n)pR(zi,n|πn)] . (37)

Additionally, if one restricts the MCMC average to bottom
and top webs, one obtains

〈B〉01
2

=
1

N⊥

N⊥∑
n=1

I∑
i=0

[
B(z⊥i,n)pR(z⊥i,n|π⊥

n )
]

(38)

〈B〉11
2

=
1

N�

N⊥∑
n=1

I∑
i=0

[
B(z�i,n)pR(z�i,n|π�

n )
]
, (39)

where π⊥
n and π�

n are the bottom and top webs of the
chain, N⊥ and N� their respective numbers, and, z⊥i,n
and z�i,n their respective paths. Finally, the web-ensemble
average of a configurational quantity A considered in Zθ

(Eq. (62)) can be estimated using

〈Aθ〉�1
2
=
∑N

n=1

∑I
i=0 A(rθ,i,n)Υθ(zi,n)pR(zi,n|πn)∑N

n=1

∑I
i=0 Υθ(zi,n)pR(zi,n|πn)

.(40)

4 Web averages for free energy differences

The partition function ratio Z̃θ/Z̃ 1
2

can be computed in
the web ensemble using respectively equations (37–39)

Z̃θ

Z̃ 1
2

= 〈Υθ〉�1
2

= 〈Υ 〉01
2

= 〈Υ 〉11
2

(41)

recalling that the path function is Υθ(z) = Kθ(z)/K 1
2
(z).

The free energy difference can then be obtained using
three different methods

β∆F = ln 〈Υ0〉�1
2
− ln 〈Υ1〉�1

2
(42)

= ln 〈Υ0〉11
2
− ln 〈Υ1〉01

2
(43)

= ln 〈Υ0〉01
2
− ln 〈Υ1〉11

2
. (44)

The average of equation (42) corresponds to an all infor-
mation retrieving method (AIR). At variance, the average
of equation (43) corresponds to a partial information re-
trieving method (PIR): unselected paths generated in Z̃θ

are discarded when estimating the Z̃θ/Z̃ 1
2

ratio (θ = 0 or
1). Finally, the web-average of equation (44) corresponds
to the residence weight method, which was derived previ-
ously [5,6]. This method consists in retrieving information
only of the trial paths generated in Z̃θ (or approximately
generated in Z̃θ if the alternating shooting procedure is
used as in Ref. [6,16]) when estimating the Z̃θ/Z̃ 1

2
ratio

(θ = 0 or 1).
As an example, we show how to practically implement

a web average. Combining equations (22), (28) and (35)
and using the identity Υ1−α = [Υα]−1 yields

Υθ(zi)pR(zi|π) = Υθ(zi)Υ1−α(zi)

⎡
⎣ I∑

j=0

Υ1−α(zj)

⎤
⎦
−1

=
exp [β(α − θ)W (zi)]∑I

j=0 exp
[
β(α − 1

2 )W (zj)
] (45)

whatever 0 ≤ i ≤ I +1 and where α = 1 for a top web and
α = 0 for a bottom web. Then inserting equation (45) us-
ing (α, θ) = (0, 1) and (1, 0) into equations (38) and (39),
respectively, yields the PIR estimates of the two following
partition function ratios

Z1

Z̃ 1
2

=
1

N⊥

N⊥∑
n=1

∑I
i=0 exp[−βW (z⊥i,n)]∑I
i=0 exp[−β

2 W (z⊥i,n)]
(46)

Z0

Z̃ 1
2

=
1

N�

N�∑
n=1

∑I
i=0 exp[βW (z�i,n)]∑I
i=0 exp[β

2 W (z�i,n)]
. (47)

Using instead (α, θ) = (1, 1) and (0, 0) yields the RW es-
timates of these two partition function ratios

Z1

Z̃ 1
2

=
I + 1
N�

N�∑
n=1

[
I∑

i=0

exp[
β

2
W (z�i,n)]

]−1

(48)

Z0

Z̃ 1
2

=
I + 1
N⊥

N⊥∑
n=1

[
I∑

i=0

exp[−β

2
W (z⊥i,n)]

]−1

. (49)

They correspond to arithmetic averages of normalized res-
idence weights. Then the RW estimates of the free energy
difference are

β∆F = ln
N⊥∑N�

n=1[
∑I

i=0 exp[+β
2 W (z�i,n)]−1

N�∑N⊥
n=1[

∑I
i=0 exp[−β

2 W (z⊥i,n)]−1
. (50)
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The AIR estimates are deduced from the PIR and RW
estimates by taking their arithmetic averages if partition
function ratios are involved, or their exponential averages
if free energy differences are instead concerned.

4.1 Web action identity

In order to cast the various information-retrieving aver-
ages (Eqs. (46–49)) into a single identity, let us define the
following action

Aα
θ (π) = − 1

β
ln

[
1

1 + I

I∑
i=0

Kθ(zi)Pα
cond(π|zi)

]
(51)

where α = 0 for a bottom web and α = 1 for a top web.
Then, the action difference written below simplifies to

Aα
θ (π) − Aα

1
2
(π) = − 1

β
ln

∑I
i=0 exp [β(α − θ)W (zi)]∑I
i=0 exp

[
β(α − 1

2 )W (zi)
]

= − 1
β

ln
I∑

i=0

Υθ(zi)pR(zi|π), (52)

which allows to express the partition function ratio as an
exponential average

Z̃θ

Z̃ 1
2

= exp
[
−β(F̃θ − F̃ 1

2
)
]

=
〈
exp

[
−β(Aα

θ (π) − Aα
1
2
(π)

]〉α

1
2

(53)

considered with respect to either top or bottom webs. His-
tograms of the action-difference will be constructed in or-
der to localize the intersecting values with respect to the
free energy differences (F̃θ − F̃ 1

2
) and to quantify the over-

lapping properties [22] of the sampled distributions.

5 Simulation results

5.1 Toy model

The three information-retrieving averages are imple-
mented on a toy model system and compared to the
standard MCMC average (M). The system consists in 50
harmonic oscillators. A parametrized internal energy is
defined as follows

Eλ(r) = (1 − λ)
k0

2
[r− c/k0]

2 + λ
k1

2
[r + c/k1]

2 (54)

where 0 ≤ λ ≤ 1 and whose parameters are given by

c = 1
√

k0/3 1 = (1, ..., 1)
k1 = 1.2k0 k0 = 1.

Here, the switching procedure between systems (0) and
(1) is instantaneous, hence z = (r, r), W (z) = E1(r) −
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switching the particle system from Z0 to Z1 statistics (dis-
tribution D0) or from Z1 to Z0 statistics (distribution D1).
The intermediate work-histogram D1/2 corresponds to statis-

tics Z̃ 1
2
.

E0(r). Moreover, since there is a single path associated
to any configuration, this path occurs with probability
one. Therefore, F̃α = Fα whatever α ∈ [0, 1], where
F̃α = −β−1 ln Z̃α. The relevant free energy differences of
the system are

F1 − F0 = 25β−1 ln
k1

k0
(55)

F 1
2
− F0 = 25β−1 ln

k0 + k1

2k0
+ E 1

2
(56)

F1 − F 1
2

= 25β−1 ln
2k1

k0 + k1
− E 1

2
(57)

where E 1
2

= E 1
2
(r = 0).

Figure 3 displays the three work-histograms, D0, D 1
2

and D1, of the probability Pθ(W ) = 〈δ (W (z) − W )〉θ
with θ = 0, 1

2 and 1, respectively. Note that any two his-
tograms Dθ and Dθ′ are related by a Legendre transform[
F̃θ − 1

β
ln Pθ(W )

]
=
[
F̃θ′ − 1

β
ln Pθ′(W )

]
− (θ′ − θ)W

and, consequently, they intersect at the value

F̃θ − F̃θ′

θ − θ′
=

Fθ − Fθ′

θ − θ′
. (58)

These two properties stem from generalizing the non-
equilibrium fluctuation theorem [16].

5.2 Free energy differences

We have estimated the free energy differences using
the path-sampling scheme detailed in Section 2.1 using
p0 = p1 = 1/2 and implemented the three information-
retrieving MCMC averages detailed in Section 3.2 in ad-
dition to the conventional Metropolis average (M). Esti-
mates of F1 − F 1

2
and F1 − F0 have been computed using
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, respectively, plotted as

a function of I for the various information-retrieving methods.

blocks consisting of N/I (N = 103 or 105) and 105 webs,
respectively. Figures 4 and 5a display the standard devia-
tions, σ103/I , and, σ105/I , of F1 − F 1

2
and the normalized

standard deviations, [σ105 ]/I, of F1 − F0, obtained with
varying I. All standard deviations have then been com-
puted using B = 103 estimates, except for σ103/I that
used B = 104 estimates of F1 − F 1

2
. We observe that the

PIR method yields the worst standard deviations. They
are even larger than the ones given by the conventional
Metropolis average (M). This feature illustrates the corol-
lary by Jourdain and Delmas [9] stating that information-
retrieving does not result, in general, in variance reduction
(also demonstrated for the more general case I ≥ 1). We
also observe in Figures 4 and 5a that the RW method is the
best for all I values, and that the AIR method exhibits an
intermediate behaviour with standard deviations system-
atically better than the ones of the conventional method.
The intermediate efficiency of the AIR method with re-
spect to the PIR and RW methods stems from the fact
that the AIR estimates are the exponential averages of
the PIR and RW estimates.

The additional simulations displayed in Figure 5b
have been carried out using the alternating procedure,
which consists in alternately generating the trial paths
forward and backward. Interestingly, this procedure re-
sults in standard deviations systematically smaller than
the ones obtained with the parallel shooting procedure
(see Fig. 5a). This is because the latter procedure exhibits
larger correlating effects: repeatedly generating paths in
the same direction indeed favours sequences of webs with

similar actions, which results in increasing the statistical
covariance.

To explain the origin of the detrimental effect of infor-
mation retrieving from web sampling, we have extracted
the action differences defined in equation (52) and con-
structed histograms of the quantities (Aθ

θ − Aθ
1
2
)/(θ − 1

2 )
with increasing I values. Figure 6 displays the two series
of histograms related to the RW method, with control
parameters such that (θ, α) = (0, 0) or (θ, α) = (1, 1),
while Figure 7 displays the two series of histograms re-
lated to the PIR method, with control parameters such
that (θ, α) = (0, 1) or (θ, α) = (1, 0). In both Figures 6
and 7, the work histograms D0, D 1

2
and D1 have been plot-

ted for comparison. We observe that all web histograms
become narrower and narrower with increasing I and are
shifted from distribution D 1

2
towards the distribution in

which trial paths are generated (D0 or D1). The fraction
of webs such that

Aα
θ (π) − Aα

1
2
(π)

θ − 1
2

≤
Fα

θ − Fα
1
2

θ − 1
2

(59)

is equal to the histogram portion of Figures 6 and 7 that is
located on the left of 2(F1−F 1

2
), for θ = 1, or on the right

of 2(F 1
2
−F0), for θ = 0. This portion is called overlapping

area. The contribution of the overlapping area to the free
energy difference should exactly counter-balance the con-
tribution of the non-overlapping area. Now, if the overlap-
ping area is significantly smaller than the non-overlapping
area, the standard deviation of the former contribution
will be estimated using few data per blocks and will thus
be significantly larger than the one of the latter contri-
bution. The total precision and standard deviation of the
free energy estimates will thus be dictated by the size of
the two overlapping areas that are involved. We have thus
collected the overlapping areas as a function of I from
Figures 6 and 7 and plotted them in Figure 8. We observe
that, with increasing I, the overlapping areas increase for
the RW method and decrease for the PIR method, which
well correlates with the observed beneficial or detrimental
effect of information-retrieving.

Concerning the RW method, we also observe slow de-
creases of the standard deviations with increasing I. To
understand this feature, we have investigated the corre-
lating effects related to the Metropolis rejections: when
averaging over the Markov chain of paths, a work quan-
tity may appear several times in the successive residence
weights, which results in increasing the standard devia-
tions. Additional calculations have been carried out in or-
der to quantify these correlating effects. We have first com-
puted the standard deviations for blocks of size N/I and
values of N ranging from 102 to 105. The same procedure
was then repeated, but one out of twenty residence weights
were used in the average, which required performing a sim-
ulation 20 times longer. This way of proceeding almost
cancels the correlations between residence weights since
the acceptance rate increases with I from 12% at I = 1
(see Fig. 9b). Figure 9a displays the obtained standard
deviations. We observe that eliminating the correlations
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substantially decreases the standard deviation but only
for small block sizes N/I ≤ 100. Hence correlating effects
only arise when a small number of paths can be afforded in
the calculations which happens when system (0) and (1)
strongly differ from each other, thus requiring to invest
most of the computational resources on few paths with a
very slow switching rate. In this case, it is beneficial to
generate the trial paths in parallel, since the acceptance
rate would increase (see Fig. 9b) and the detrimental cor-
relating effects would be reduced at the same time (see
Fig. 9a). Dispatching the generation of the trial moves on
a parallel computer architecture should be done since the
resulting gain of efficiency would largely compensate for
the communication costs between processors.

5.3 Landau free energies

We have observed that information-retrieving is benefi-
cial in computations of free energy differences when both
the target ensemble and the ensemble in which trial paths
are generated coincide. This behaviour results from the
fact that the unselected trial moves contain an informa-
tion relevant to the thermodynamic quantity to estimate.
To complete our study, we now investigate the effect of
information-retrieving when the sampled distribution co-
incides with the targeted distribution but differs from the
distribution in which trial moves are generated. This situ-
ation arises in parallel tempering computations of a Lan-
dau free energy. With the present toy model, it amounts
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to compute a Landau free energy in ensemble Z 1
2
, while

proposing replica exchanges between ensembles Z0 and
Z 1

2
or between ensembles Z 1

2
and Z1. The exponential

of the Landau energy corresponds to a probability density
defined with respect to an order parameter. Such a density
can be estimated from a direct MCMC average. Consid-
ering that the internal energy is the order parameter, we
have computed the probability density P 1

2
(E) by averag-

ing the configurational function A(r) = δ(E 1
2
(r)−E) using

equation (40) with θ = 1
2 . Trial configurations are gener-

ated in both Z0 and Z1. This case study partly reproduces
the computational set-up of reference [23] which combines
information-retrieving and parallel tempering for comput-
ing a Landau free energy.
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as a function of I .

Figure 10 displays the energy histogram obtained with
the AIR method and the conventional method (M). We
observe that information-retrieving allows to explore a
larger portion of the histogram, in agreement with the
behaviour reported in reference [23], even though only
rough estimates are obtained in the histogram tails. In-
deed, information retrieving is observed to have a moder-
ate effect (even if always beneficial) on the standard devi-
ations, in contrast to study [23] that reported a consider-
able speed-up of the calculations. However, our investiga-
tion differs from the investigation of Coluzza et al. [23]
in the fact that the latter one introduced an umbrella
(or auxiliary) potential that was optimized on-the-fly
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2
. The exact analytical form is P(E) =
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m/2−1βm/2/((m/2 − 1)!) where

m = 50 and E0 = 2.52. Error bars correspond to the stan-
dard deviations of the top panel.

using an adaptive procedure: flat-sampling along the or-
der parameter was thus insured. In the light of the cal-
culations displayed in Figure 10, we argue that owing
to additional estimates along the order parameter that
are made possible by retrieving all available information,
the auxiliary potential is constructed faster and, subse-
quently, the adaptive procedure converges considerably
faster. This argument may also apply to explain a similar
speed-up reported in a simulation study [24] investigating
the relevance of information-retrieving, using density-of-
states sampling [25] instead of parallel tempering. Hence,
information-retrieving is systematically found to be of
relevance in non-equilibrium techniques involving either
path-sampling or adaptive-sampling.

6 Alternative derivation

In this section, we give an alternative derivation of web
sampling and information-retrieving averages. The objec-
tive is to clarify and correct the approach that was pro-
posed in reference [5,6] to justify the residence weight
method.

We start by noticing that, in the course of a Monte
Carlo simulation, the path zis,n that is selected at the
n-th step corresponds to the path that would be selected
at the n+1-st step of the Monte Carlo simulation that con-
structs the reverse Markov chain. We have z0,n+1 = zis,n.
Let then assume that the symmetric selecting probabili-
ties of equation (21) are used, and let also decompose the
forward and backward selecting symmetric probabilities

as a function of the web conditional probabilities

pR(z0,n+1|πn) =
K 1

2
(z0,n+1)

Z̃ 1
2

Pcond(πn+1|z0,n+1)
(I + 1)Φ(πn+1)

pR(z0,n+1|πn+1) =
K 1

2
(z0,n+1)

Z̃ 1
2

Pcond(πn|z0,n+1)
(I + 1)Φ(πn)

,

where a mean web probability density is introduced

Φ(π) =
1

I + 1

I∑
i=0

Φ(π|zi). (60)

From these expressions, it immediately follows that the
detailed balance equation

Φ(πn)pR(z0,n+1|πn)Pcond(πn+1|z0,n+1) =
Φ(πn+1)pR(z0,n+1|πn+1)Pcond(πn|z0,n+1) (61)

is obeyed in the web ensemble. This implies that the
Markov chain of webs {πn} is distributed according to
the probability density Φ. Now, the I + 1 equivalent web-
averages of equation (29) can be averaged as follows

〈B〉�1
2

=
1

I + 1

∫ I∑
i=0

B(zi)Φ(π|zi)Dπ, (62)

=
1

I + 1

∫ I∑
i=0

B(zi) [Φ(π|zi)/Φ(π)] Φ(π)Dπ.

Estimating the web-average of equation (62) from the
Markov chain {πn} requires to re-weigh by dividing with
the generated web weights Φ(πn), which yields

〈B〉�1
2

=
1

N(I + 1)

N∑
n=1

I∑
n=0

[
B(zi,n)

Φ(πn|zi,n)
Φ(πn)

]
. (63)

The Monte Carlo averages of equation (63) obtained for
the web-sampling scheme is strictly identical to equa-
tion (37).

The approach presented here that considers detailed
balance in the web ensemble itself is equivalent to the one
given in reference [5,6] that involved a weighted detailed
balance equation with symmetric selecting probabilities
pR(zi|π). However, the generalization of the weighted de-
tailed balance equation that was derived for the Metropo-
lis rule [12] is not correct, because the web probability
density that would be defined from the residence weights
would depend on the result of the Metropolis procedure.
The residence weights that were then derived omitted a
contribution and depended on acceptance or rejection.
Paraphrasing a remark made by Boulougouris and Frenkel
in the [10,11], the crucial point here is that the resi-
dence weights are independent of the algorithm used in
the sampling process. Hence, the symmetrical form used
in the present study and in reference [5,6] should always
be used.
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Since erroneous residence weights were used in ref-
erences [12,16], we wish to quantify the systematic er-
ror that was introduced. Considering the present toy
model and assuming the estimates normally distributed,
one obtains [4.55677; 4.55833] for the 68% confidence
interval of the mean, calculated using N = 103 esti-
mates and B = 106 webs per estimate. The correct value,
∆F = 4.5580, lies in this interval hence the error is hardly
detectable. This is because the first error introduced in the
numerator compensates for the second one introduced in
the denominator. Hence, if we set k1/k0 = 1.5 (instead
of 1.2) in order make the work-distributions more asym-
metric, we find [10.12313, 10.13475] for a 68%-confidence
interval obtained using N = 103 and B = 104. The exact
value ∆F = 10.13662 is clearly outside the interval. Now,
in the model system used in reference [16], the D0 and
D1 work-histograms are even more symmetrical than the
ones of our toy model with k1/k0 = 1.2. Moreover, they
are shifted to a high value β∆F = −1457.4 ± 0.2. As a
result, the relative error that was introduced is completely
undetectable and is of order 10−6.

Related to the comment above is the fact that when the
path-sampling scheme with the Metropolis rule (Eq. (20))
is used, no detailed balance condition is satisfied in the
web ensemble. The webs πn associated to the gener-
ated paths z0,n are simply distributed with probability
Φ(πn|z0,n). Since permuting the paths of the webs belong-
ing to the constructed chain (performing {πn} → {

π̄i
n

}
)

does not affect the MCMC estimate of equation (62), the
web chain seems to be distributed with respect to any
probability density Φ(π|zi), and, consequently, with re-
spect to the mean probability density (Eq. (60)) as well,
although it is not the case. This feature indeed illustrates
the well-known statement that imposing detailed balance
with respect to the probability density of a given ensem-
ble is not a necessary condition to insure that the MCMC
estimates converge in this ensemble.

7 Concluding remarks

In this article, statistical averages of thermodynamic
quantities were formulated in an ensemble consisting of
webs, defined as the sets of paths linked by a parallel
stochastic procedure. MCMC averages can be taken in this
web ensemble which allows to include information relative
to Monte Carlo trial moves that have been discarded by
the Metropolis acceptance procedure. The various MCMC
averages that have been proposed have been implemented
for estimating a free energy difference. Variance reduction
with respect to the conventional sampling procedure is
only observed when the unselected moves contain an in-
formation relevant to the quantity to compute, i.e. when
the wasted work quantities strongly contribute to the free
energy difference. In the present study, this requirement
is satisfied by the residence weight method. Moreover, we
numerically observe that, with this information-retrieving
method, parallelization of the Metropolis procedure does
not result in an increase of the standard deviation. This

feature indicates a straightforward way to parallelize al-
gorithms dedicated to the computation of free energy dif-
ferences.

Finally, it is worth noting that the residence weights
correspond to Rosenbluth factors involving path quan-
tities. They present a formal similarity with the Rosen-
bluth factors that were derived and incorporated into the
non-equilibrium work method by Wu and Kofke [26] in
order to improve its computational efficiency. The RW
method differs from the method of Wu and Kofke in the
fact that two types of Rosenbluth factors are involved
instead of only one type. This feature makes it possible
to retrieve the relevant information from the two possi-
ble switching directions between system (1) and system
(0). Indeed, a first type of Rosenbluth factor gives ac-
cess to the F1 − F 1

2
difference of free energy, while the

second type to the F0 − F 1
2

difference, in both case con-
sidered with respect to the intermediate system (1/2).
Information-retrieving averages may thus be generalized
to allow for a bidirectional implementation of the various
multi-stage Rosenbluth-sampled techniques proposed by
Wu and Kofke [26] and also of the interactive particle sys-
tem techniques proposed by Rousset and Stoltz [27,28].
Alternatively, information-retrieving averages could have
been implemented for computing the reverse free energy
differences F 1

2
−F1 and F 1

2
−F0, where system (1/2) is con-

sidered with respect to systems (0) and (1), as it is done
in overlap sampling [29]. Hence, the web ensemble for-
malism introduced in the present study might be further
considered for improving existing free energy methods.
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3. M. Athènes, P. Bellon, G. Martin, Phil. Mag. A 76, 527

(1997)
4. D.R. Mason, R.E. Rudd, A.P. Sutton, Computer Physics

Communications 160, 140 (2004)
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